Authors' Reply to Comment by N. Curle

Morris Morduchow*
Polytechnic Institute of Brooklyn, Brooklyn, N. Y.

AND

Stanley P. Reyle†
Rutgers University, Newark, N. J.

THE present authors had indicated in their note¹ that other methods of calculating the laminar separation point had been proposed but that it was not their concern to review them there. The method of Stratford as modified by Curle and Skan,²,³ for incompressible flow, certainly is noteworthy for its simplicity and its agreement with various exact solutions. This, however, does not contradict the fact that the method of Morduchow and Clarke¹,⁴ is, first of all, also relatively simple, involving at most a numerical quadrature. (Indeed, the quadrature takes into account, in a way, the previous history of the boundary layer.) Moreover, the formula of Morduchow and Clarke holds both for incompressible flow and for compressible flow with zero heat transfer, and the calculations are virtually as simple for the latter case as for the former. This is evidenced by the ease with which the cases in Ref. 1 were calculated by this means.

With regard to accuracy, considering first incompressible flow, it hardly can be denied that the agreement of the formula of Morduchow and Clarke with essentially exact solutions is very good and certainly is sufficient for practical purposes. For example, the values of ξ_s for the case $u_1/u_\infty = 1 - \xi^n$ are everywhere within 2.5% of Tani's values. Such agreement is especially noteworthy since the method of Ref. 4 is entirely self-contained and makes no use of any known exact solutions for either incompressible or compressible flow.

As regards compressible flow, Curle states that the present authors' agreement with Stewartson's values of ξ_s vs M_{∞} for $u_1/u_{\infty}=1-\xi$ simply means that both sets of values are in "about 30 or 40%" error at $M_{\infty}=4$. He bases this on the value $\xi_s=0.045~(\pm 10\%)$ for $M_{\infty}=4$, reported by him⁵ and obtained by Mathematics Division, National Physical Laboratories. No details at all are given of how this computation, which is far from routine and involves, for example, a singularity at the separation point (cf., the machine calculation for the incompressible case⁶), was carried out. There have been some other purportedly fairly accurate calculations of this case which do not agree with the National Physical Laboratories value. These results, which are discussed below and shown in Table 1, indicate that it appears rather premature at present to infer that the present authors' results have such a large quantitative error at $M_{\infty} \geqslant 4$.

Stewartson's calculations are based on the application of his well-known transformation to obtain a corresponding incompressible flow and then the calculation of the latter flow by means of Howarth's polygonal method. Tani used a two-parameter method based on the momentum and energy integral boundary layer equations. His results are

seen to be in good agreement with the present authors' (or Stewartson's) for all Mach numbers calculated, especially if corrections for Prandtl number and viscosity are considered. Tani's results are based on the Sutherland viscosity-temperature relation and on a Prandtl number Pr of 0.72. According, for example, to Gadd, 10 the effect of changing Pr from 1 to 0.72 is to move the separation point downstream by about 7 or 8% at M_{∞} = 4, with a similar effect at other Mach numbers. If this effect is considered at $M_{\infty} = 4$, it is seen that Tani's results at $M_{\infty} = 4$ (and at other M_{∞}) will be brought still closer to the present authors'; a correction10 for nonlinearity of the μ - T relation probably also would move Tani's values still closer. As previously indicated,1 Wrage¹¹ has recently calculated this case by extending Görtler's series method to compressible flows, in conjunction with a finite-difference method and an electronic computer. Table 1 shows that Wrage's results are substantially similar to the present authors'; the largest deviation appears to be at $M_{\infty} = 6$ (viz., about 13%), but, interestingly, Wrage's results come still closer at $M_{\infty} = 10$. An application of Stewartson's transformation to Thwaites' method¹² leads to results10 quite similar to the present authors'. (A perusal of the literature has indicated that there have been a variety of still other calculations of ξ_s for the problem treated here, and some of them deviate considerably at various Mach numbers from the results in Table 1. However, in each such case the method used was admittedly very approximate and gave appreciable error at $M_{\infty} = 0$. Moreover, the results of these methods for various M_{∞} deviated considerably from one another, without the consistent agreement for all M_{∞} shown by the various results in Table 1.)

References

- ¹ Morduchow, M. and Reyle, S. P., "On calculation of the laminar separation point, and results for certain flows," J. Aerospace Sci. 29, 996–997 (1962).
- ² Curle, N. and Skan, S. W., "Approximate methods for predicting separation properties of laminar boundary layers," Aeronaut. Quart. VIII, 257–268 (1957).
- ³ Curle, N., "Comments on 'Calculation of laminar separation'," AIAA J. 1, 728 (1963).
- ⁴ Morduchow, M. and Clarke, J. H., "Method for calculation of compressible laminar boundary-layer characteristics in axial pressure gradient with zero heat transfer," NACA TN 2784 (1952).
- ⁵ Curle, N., "The steady compressible laminar boundary layer, with arbitrary pressure gradient and uniform wall temperature," Proc. Roy. Soc. (London) A249, 206–224 (1958).
- ⁶ Leigh, D. C. F., "The laminar boundary-layer equation: a method of solution by means of an automatic computer," Proc. Cambridge Phil. Soc. 51, 320–332 (1955).
- Cambridge Phil. Soc. 51, 320–332 (1955).

 ⁷ Stewartson, K., "Correlated incompressible and compressible boundary layers," Proc. Roy. Soc. (London) A200, 84–100 (1949).
- ⁸ Howarth, L., "On the solution of the laminar boundary layer equations," Proc. Roy. Soc. (London) A164, 547–579 (1938).
- ⁹ Tani, I., "On the approximate solution of the laminar boundary-layer equations," J. Aerospace Sci. 21, 487–495, 504 (1954).
 - ¹⁰ Gadd, G. E., "Some aspects of laminar boundary layer sepa-

Table 1 Separation point for $u_1/u_\infty=1-\xi,\,\mu\sim T,\,{
m and}\,\, Pr=1$ (except Tani), zero heat transfer

<i>M</i> ∞	0	1	3	4	6	10
ξ_{s} (Morduchow-Clarke)	0.122	0.113	0.077	0.062	0.042	0.023
ξ_s (Stewartson)	0.120	0.110	0.077	0.062	0.044	0.024
ξ_s (Tani; $T_{\infty} = 72^{\circ} R$; $Pr = 0.72$)	0.120	0.111	0.081	0.066	0.048	
ξ_s (Tani; $T_{\infty} = 648^{\circ} \text{R}$; $Pr = 0.72$)	0.120	0.112	0.085	0.072	0.057	
ξ_s (Wrage)	0.125	0.112	0.072	0.056	0.037	0.021
ξ_s (Thwaites-Stewartson)	0.120	0.111		0.060	0.043	0.023

Received by IAS December 6, 1962.

^{*} Professor of Applied Mechanics.

[†] Associate Professor of Mechanical Engineering.

ration in compressible flow with no heat transfer to the wall," Aeronaut. Quart. IV, 123-150 (1953).

¹¹ Wrage, E., "Entwicklung und Anwendung einer Allgemeinen Reihenmethode zur Berechnung laminarer, kompressibler Grenzschichten," Deut. Versuchsanstalt. Luftfahrf e. V., Ber 134 (1960).

¹² Thwaites, B., "Approximate calculation of the Iaminar boundary layer," Aeronaut. Quart. 1, 245–280 (1949).

Calendar of Forthcoming AIAA Meetings

Date	Meeting	Location	Abstract Deadline
April 1-3	AIAA Launch and Space Vehicle Shell Structures Conference ¹	Palm Springs, Calif.	Past
April 10-11	Engineering Aspects of Magnetohydrodynamics	Berkeley, Calif.	Past
April 22-24	2nd AIAA-NASA Manned Space Flight Meeting	Dallas, Texas	Past
April 23-25	AIAA-ASME Hypersonic Ramjet Conference ²	White Oak, Md.	Past
May 2	AIAA-ASMA Manned Space Laboratory Conference ³	Los Angeles, Calif.	Past
May 6-8	AIAA-ASME-SAE Aerospace Reliability and Maintain- ability Conference	Washington, D. C.	Past
May 20-22	AIAA-IEEE-ISA National Telemetering Conference	Albuquerque, New Mex.	Past
June 12–14	Heat Transfer and Fluid Mechanics Institute ⁴	Pasadena, Calif.	Past
June 17-20	AIAA Summer Meeting ³	Los Angeles, Calif.	Past
July 10-12	AIAA-AMS Meteorological Support for Aerospace Test- ing and Operation	Fort Collins, Colo.	Past
July 23–26	AIAA Torpedo Propulsion Conference ⁵	Newport, R. I.	March 25
Aug. 12-14	AIAA Guidance and Control Conference ⁶	Cambridge, Mass.	Past
Aug. 19-21	AIAA Astrodynamics Conference ³	New Haven, Conn.	Past
Aug. 26-28	AIAA Simulation for Aerospace Flight Conference ³	Columbus, Ohio	Past
Aug. 26-28	AIAA Conference on Physics of Entry into Planetary Atmospheres ⁶	Cambridge, Mass.	May 15
Sept. 22-27	XIVth International Astronautical Congress ⁷	Paris, France	April 15
Sept. 23–27	1st International Telemetering Conference	London, England	Past
Sept. 30-Oct. 1	AIAA Engineering Problems of Manned Interplanetary Exploration Meeting ³	Palo Alto, Calif.	April 1
Oct. 17–18 } Oct. 21–22 }	AIAA-CASI-RAeS 9th Anglo-American Conference	∫ Cambridge, Mass. (Montreal, Canada	Open
Nov. 4-6	AIAA Vehicle Design and Propulsion Meeting ³	Dayton, Ohio	April 15
Dec. 4-6	AIAA-Air Force Testing of Manned Flight Systems	Edwards Air Force Base, Calif.	April 8

- ¹ Call for papers in August issue. Program available from AIAA New York office.
- ² Call for papers in December issue. Program available from AIAA New York office.
- 3 Flyer with additional program details available from AIAA New York office.

4 Call for papers in October issue.

- ⁵ Call for papers in March issue. Flyer with additional program details available from AIAA New York office.
- 6 Call for papers in February issue. Flyer with additional program details available from AIAA New York office.

7 Call for papers in January issue.

Except when program chairman is known, abstracts should be mailed to Robert R. Dexter, Director of Technical Services, American Institute of Aeronautics and Astronautics, 500 Fifth Avenue, New York 36, N. Y.

The Society welcomes suggestions from individual members on subjects that would be appropriate for specialist meetings or for special sessions at the Annual Meetings. Such suggestions should be supported in writing by evidence of broad interest in the subject and by the willingness of at least one organization to serve as host. The Meetings Manager will forward such suggestions to the appropriate Technical Committee for consideration.